Code:19CS4602C

III B.Tech - II Semester - Regular Examinations - JUNE 2022

SOFTWARE METRICS (COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
- 4. All parts of Question paper must be answered in one place.

PART - A

- 1. a) List the objectives for software measurement from developer perspective.
 - b) Recall software product level internal and external attributes.
 - c) Define a box plot.
 - d) Interpret a cyclomatic number.
 - e) Define reliability.

PART - B

<u>UNIT – I</u>

2. a) Analyze direct and derived Measurement.

6 M

b) Illustrate objective and subjective Measures.

6 M

12 M

OR

3. Explain the representational theory of measurement.

<u>UNIT – II</u>

$\underline{\mathbf{UNII} - \mathbf{II}}$			
4.	a)	Identify measurement for process improvement.	6 M
	b)	Classify software measures.	6 M
OR			
5.	a)	Evaluate structural and complexity metrics.	6 M
	b)	Develop software measurement validation.	6 M
<u>UNIT-III</u>			
6.	a)	Plan data collection for incident reports.	6 M
	b)	Explain hypothesis testing approaches.	6 M
		OR	
7.		Explain analysis of software measurement data.	12 M
$\mathbf{UNIT} - \mathbf{IV}$			
8.	a)	Identify functional size measures and estimators.	6 M
	b)	Outline any two aspects of structural measures.	6 M
		OR	
9.		Interpret object-oriented structural attributes and	
		measures.	12 M
$\underline{\mathbf{UNIT} - \mathbf{V}}$			
10.	a)	Summarize the software reliability problem.	6 M
	b)	Illustrate ISO/IEC 9126-1 and ISO/IEC 25010 Standard	
		Quality Models.	6 M
OR			
11.	a)	Examine any two parametric reliability growth models.	6 M
	b)	Identify quality measures based on defect counts.	6 M
	,	J 1 J	0 111